Abstract

A novel electron-rich cyclopentadithienothiophene (9H-thieno[3,2-b]thieno[2″,3″:4′,5′]thieno[2′,3′:3,4]cyclopenta[1,2-d]thiophene, CDTT) is reported by an optimized one-pot procedure involving two sequential lithiation/acylation steps. Three novel copolymers containing the varied electron-deficient acceptors 2,1,3-benzothiadiazole (BT), 5,6-difluoro-2,1,3-benzothiadiazole (DFBT) and naphtho[1,2-c:5,6-c]bis[1,2,5]-thiadiazole (NT) were prepared by Stille polymerization. These three polymers show promising charge transport properties in transistor devices, with PCDTT-BT exhibiting unipolar hole mobility up to 0.67 cm2 V–1 s–1 in top gate devices utilizing gold source drain electrodes. Changing to a bilayer electrode of Al/Au resulted in ambipolar transistor behavior, with PCDTT-DFBT exhibiting balanced hole and electron mobilities of 0.38 and 0.17 cm2 V–1 s–1 respectively. These results clearly demonstrate that CDTT is a promising new building block for conjugated polymers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call