Abstract

PurposeThis work aims to develop a new kind of semicrystalline polymer filament and optimize its printing parameters in the fused deposition modeling process. The purpose of this work also includes producing FDM parts with good ductility.Design/methodology/approachA new kind of semicrystalline filaments composed of long-chain polyamide (PA)1012 was prepared by controlling screw speed and pulling speed carefully. The optimal printing parameters for PA1012 filaments were explored through investigating dimensional accuracy and bonding strength of FDM parts. Furthermore, the mechanical properties of PA1012 specimens were also evaluated by varying nozzle temperatures and raster angles.FindingsIt is found that PA1012 filaments can accommodate for FDM process under suitable printing parameters. The print quality and mechanical properties of FDM parts highly depend on nozzle temperature and bed temperature. Even though higher temperatures facilitate stronger interlayer bonding, FDM parts with excellent tensile strength were obtained at a moderate nozzle temperature. Moreover, a bed temperature well above the glass transition temperature of PA1012 can eliminate shrinkage and distortion of FDM parts. As expected, FDM parts prepared with PA1012 filaments exhibit good ductility.Originality/valueResults in this work demonstrate that the PA1012 filament allows the production of FDM parts with desired mechanical performance. This indicates the potential for overcoming the dependence on amorphous thermoplastics as a feedstock in the FDM technique. This work also provides insight into the effect of materials properties on the mechanical performance of FDM-printed parts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call