Abstract
Summary We introduce a method for non-parametric density estimation on geometric networks. We define fused density estimators as solutions to a total variation regularized maximum likelihood density estimation problem. We provide theoretical support for fused density estimation by proving that the squared Hellinger rate of convergence for the estimator achieves the minimax bound over univariate densities of log-bounded variation. We reduce the original variational formulation to transform it into a tractable, finite dimensional quadratic program. Because random variables on geometric networks are simple generalizations of the univariate case, this method also provides a useful tool for univariate density estimation. Lastly, we apply this method and assess its performance on examples in the univariate and geometric network setting. We compare the performance of various optimization techniques to solve the problem and use these results to inform recommendations for the computation of fused density estimators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society Series B: Statistical Methodology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.