Abstract

This study aims to find the optimal learning algorithm parameter, model and connection, initialization weight and normalization method using fused Convolutional Neural Network (CNN) for facial expression recognition. The best model and parameters are identified using a ten-fold cross validation method. By determining these ideal elements, a superior accuracy can potentially be achieved. CNN was utilized to a group of seven emotions from various facial expressions, namely, happy, sad, angry, surprise, disgust, fear and neutral. The four layer CNN configuration was prepared with the JAFFE dataset, and yielded an overall accuracy of 83.72%. The outcome demonstrates that the fused CNN with the mentioned aims can generate higher accuracy with a smaller network compared to related models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.