Abstract
This work is to develop a general framework, namely analytical iterative reconstruction (AIR) method, to incorporate analytical reconstruction (AR) method into iterative reconstruction (IR) method, for enhanced CT image quality and reconstruction efficiency. Specifically, AIR is established based on the modified proximal forward–backward splitting (PFBS) algorithm, and its connection to the filtered data fidelity with sparsity regularization is discussed.As a result, AIR decouples data fidelity and image regularization with a two-step iterative scheme, during which an AR-projection step updates the filtered data fidelity term, while a denoising solver updates the sparsity regularization term. During the AR-projection step, the image is projected to the data domain to form the data residual, and then reconstructed by certain AR to a residual image which is then weighted together with previous image iterate to form next image iterate. Intuitively since the eigenvalues of AR-projection operator are close to the unity, PFBS based AIR has a fast convergence. Such an advantage is rigorously established through convergence analysis and numerical computation of convergence rate.The proposed AIR method is validated in the setting of circular cone-beam CT with AR being FDK and total-variation sparsity regularization, and has improved image quality from both AR and IR. For example, AIR has improved visual assessment and quantitative measurement in terms of both contrast and resolution, and reduced axial and half-fan artifacts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.