Abstract

BackgroundThe rapid development of artificial intelligence technology has improved the capability of automatic breast cancer diagnosis, compared to traditional machine learning methods. Convolutional Neural Network (CNN) can automatically select high efficiency features, which helps to improve the level of computer-aided diagnosis (CAD). It can improve the performance of distinguishing benign and malignant breast ultrasound (BUS) tumor images, making rapid breast tumor screening possible.ResultsThe classification model was evaluated with a different dataset of 100 BUS tumor images (50 benign cases and 50 malignant cases), which was not used in network training. Evaluation indicators include accuracy, sensitivity, specificity, and area under curve (AUC) value. The results in the Fus2Net model had an accuracy of 92%, the sensitivity reached 95.65%, the specificity reached 88.89%, and the AUC value reached 0.97 for classifying BUS tumor images.ConclusionsThe experiment compared the existing CNN-categorized architecture, and the Fus2Net architecture we customed has more advantages in a comprehensive performance. The obtained results demonstrated that the Fus2Net classification method we proposed can better assist radiologists in the diagnosis of benign and malignant BUS tumor images.MethodsThe existing public datasets are small and the amount of data suffer from the balance issue. In this paper, we provide a relatively larger dataset with a total of 1052 ultrasound images, including 696 benign images and 356 malignant images, which were collected from a local hospital. We proposed a novel CNN named Fus2Net for the benign and malignant classification of BUS tumor images and it contains two self-designed feature extraction modules. To evaluate how the classifier generalizes on the experimental dataset, we employed the training set (646 benign cases and 306 malignant cases) for tenfold cross-validation. Meanwhile, to solve the balance of the dataset, the training data were augmented before being fed into the Fus2Net. In the experiment, we used hyperparameter fine-tuning and regularization technology to make the Fus2Net convergence.

Highlights

  • The rapid development of artificial intelligence technology has improved the capability of automatic breast cancer diagnosis, compared to traditional machine learning methods

  • We proposed a novel Convolutional Neural Network (CNN) named Fus2Net for the benign and malignant classification of breast ultrasound (BUS) tumor images and it contains two self-designed feature extraction modules

  • The results show that three-channel images have advantages over single-channel images in terms of classification performance

Read more

Summary

Introduction

The rapid development of artificial intelligence technology has improved the capability of automatic breast cancer diagnosis, compared to traditional machine learning methods. Convolutional Neural Network (CNN) can automatically select high efficiency features, which helps to improve the level of computer-aided diagnosis (CAD). It can improve the performance of distinguishing benign and malignant breast ultrasound (BUS) tumor images, making rapid breast tumor screening possible. The most common malignant tumor occurring in Chinese women is breast cancer and its incidence rate is increasing annually. Developed countries have implemented breast cancer screening guidelines early, and the 5-year survival rate of breast cancer has been increased to 89%. The peak age of breast cancer in Chinese women is between 40-50 years, which is earlier than women in Western countries [2]. Large-scale and rapid screening of benign and malignant breasts based on the computer-aided diagnosis (CAD) system has attracted more attention from researchers in recent years

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call