Abstract

The pneumatic method is a novel method determining vulnerability to embolism in plants, yet it remains unclear whether this method is suitable for all species with different xylem anatomy. In this study, using six tree species with contrasting xylem anatomy, including four vessel-bearing species (diffuse-porous wood and ring-porous wood) and two tracheid-bearing species (non-porous wood), we test the reliability of the pneumatic method by comparing to hydraulic methods and also considering turgor loss point and native embolism. Vessel length distribution and cut-open vessel volume were also evaluated using the silicone injection technique. Additionally, we also synthesized published data to find out the consistency between the pneumatic method and hydraulic methods. Results showed that there was a maximum 10-folds difference in mean vessel length and mean vessel diameter varying from 30 to 56 μm among species. The estimated open vessel volume ranges from 0.064 to 0.397 mL, with a maximum of 14% of the tube vacuum reservoir. For four vessel-bearing species, the pneumatic method showed good consistency with hydraulic methods, and this consistency was evidenced by turgor loss point and native embolism. For two tracheid-bearing species, the pneumatic method significantly overestimated vulnerability because of the bad consistencies with hydraulic methods and plant water relations. Data synthesis of 56 species also suggested that the pneumatic method can accurately measure the embolism vulnerability of vessel-bearing species but not for tracheid-bearing species. Our study provided further evidence that the pneumatic method is accurate for most vessel-bearing species and thus has the potential to be widely used in the plant hydraulics field. However, we proposed that the precise calculation of air discharge volume should take into account the volume of open vessels for species with wide and long vessels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.