Abstract

The Taylor–Chen–Kuszmaul model, which regards the dynamic fracture process of brittle materials as a continuous accrual of damage, has been successfully applied to simulate rock blast and concrete penetration. This paper employs the TCK damage model to numerical study on the effect of perforated concrete defense layer on evolution mechanism of blast-induced stress waves. The numerical results reveal that the tensile damage near free boundary should be noteworthy under a higher blast loading, and the peak values of hydrostatic pressure beneath an artificial cavity are largely reduced. The effects of cavity dimensions and position on wave evolution and reduction are detailedly explored. One empirical formula is proposed to relate the decay factor of peak hydrostatic pressure to the dimensions and relative position of cavity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call