Abstract

Using internally dialyzed neurons of Helix, we have examined the effects of sodium-pump activity and intracellular ATP concentration on transmembrane currents induced by acetylcholine (ACh) and gamma-aminobutyric acid (GABA). We also report on the effects of pump activity and levels of intracellular ATP on binding by Helix ganglia of 3H-alpha-bungarotoxin (3H-alpha-BT) and 3H-GABA. Both ouabain-containing and potassium-free solutions depressed the neurotransmitter-induced transmembrane current of one type of dialyzed neurons. An increase in the intracellular ATP concentration led to a depression of ACh-induced currents and to the disappearance of the blocking effect of ouabain on these currents. Intracellular ADP had a similar but smaller effect on transmitter-induced currents, and intracellular AMP was ineffective. The depressing effect of internal ATP on ACh-induced currents was absent in the presence of an inhibitor of membrane phosphorylation (dinitrophenol). The binding of tritium-labeled alpha-BT and GABA to the membranes was depressed by both ouabain-containing and K-free solutions and also by compounds (theophylline and NaF) which increase the levels of intracellular ATP. The results suggest that the Na pump modulates the affinity of ACh and GABA membrane receptors by the regulation of the phosphorylated state of membrane receptors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call