Abstract

The influence of intracellular angiotensin I (Ang I) and angiotensin II (Ang II) on the process of cell communication was investigated in isolated cell pairs from the failing heart of cardiomyopathic hamsters at 2 and at 6 months of age. Measurements of junctional conductance were performed on weekly coupled ventricular cells (4–5.3 nS) using two separated voltage clamp circuits. The results indicated that at 2 months of age, when no signs of heart failure are detected, the angiotensin converting enzyme (ACE) activity is low and similar to controls (0.26 nmol/mg/min). Here the intracellular dialysis of angiotensin I (10 −8 M) caused a decline of junctional conductance of 33±3.6% ( n=35) ( P<0.05) within 10 min while the administration of the same concentration of Ang I elicited cell uncoupling in cell pairs of 6-month-old cardiomyopathic hamsters in which the ACE activity was enhanced (0.41±0.05 nmol/mg/min) ( P<0.05). Intracellular administration of angiotensin II in cell pairs of 2-month-old hamsters caused a decline of junctional conductance of only 25±4.5% ( n=35) ( P<0.05) compared to cell uncoupling in 6-month-old cardiomyopathic hamsters. Intracellular losartan(10 −8 M) reduced the effect of intracellular Ang II by 68±3.5% ( n=28) on 2-month-old hamsters and abolished the effect of the peptide on 6-month-old hamsters. To investigate the influence of endogenous angiotensin II on the regulation of cell coupling, enalapril maleate (10 −8 M) or enalaprilat (10 −9 M) was used. The results indicated that at 2 months of age, no change in cell coupling was elicited by the ACE inhibitor while at 6 months of age, there was an increment of cell coupling of 72±6.2% ( P<0.05). Similar results were found with intracellular losartan (10 −8 M). These results support the view that endogenous angiotensin II is involved in the regulation of cell communication at an advanced stage of heart failure when the ACE activity is enhanced and the cardiac renin angiotensin system (RAS) is activated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.