Abstract
Zika virus (ZIKV), dengue fever (DENV) and chikungunya (CHIKV) are arboviruses that are spread to humans from the bite of an infected adult female Aedes aegypti mosquito. As there are no effective vaccines or therapeutics for these diseases, the primary strategy for controlling the spread of these viruses is to prevent the mosquito from biting humans through the use of insecticides. Unfortunately, the commonly used classes of insecticides have seen a significant increase in resistance, thus complicating control efforts. Inhibiting the renal inward rectifier potassium (Kir) channel of the mosquito vector Aedes aegypti has been shown to be a promising target for the development of novel mosquitocides. We have shown that Kir1 channels play key roles in mosquito diuresis, hemolymph potassium homeostasis, flight, and reproduction. Previous work from our laboratories identified a novel (phenylsulfonyl)piperazine scaffold as potent AeKir channel inhibitors with activity against both adult and larval mosquitoes. Herein, we report further SAR work around this scaffold and have identified additional compounds with improved in vitro potency and mosquito larvae toxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.