Abstract

This paper is concerned with decentralized event-triggered H∞ networked control for neural networks (NNs) subject to two types of stochastic cyber-attacks. Firstly, a new dynamic event-triggered scheme is introduced to monitor the sampled data transmissions, and two independent Bernoulli distributed variables are used to describe the randomly occurring cyber-attacks. Secondly, based on the networked control, the closed-loop system is constructed under the stochastic cyber-attacks and limited network bandwidth. Thirdly, by the Lyapunov-Krasovskii functional (LKF) approach, an improved stability criterion is established to ensure the closed-loop system is mean-square asymptotical stability with a prescribed H∞ performance. Based on the criterion, desired control gain is determined. Finally, the effectiveness of the obtained result is illustrated by two numerical examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call