Abstract

AbstractAdaptive local refinement (ALR) can substantially improve the performance of simulations that involve numerical solution of partial differential equations. In fact, local refinement capabilities are one of the attributes of first‐order system least squares (FOSLS) in that it provides an inexpensive but effective a posteriori local error bound that accurately identifies regions that require further refinement. Previous theory on FOSLS established the effectiveness of its local error estimator, but only under the assumption that the local region is not too ‘thin’. This paper extends this theory to the case of a rectangular domain by showing that the estimator's effectiveness holds even for certain ‘thin’ local regions. Further, we prove that when the approximation satisfies a local saturation property, convergence of a FOSLS ALR scheme is guaranteed. Copyright © 2010 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.