Abstract
Stein's (1964) method can be extended to the analysis of the bit error probability (BEP) of quadrature phase shift keying (QPSK), staggered QPSK, and minimum shift keying (MSK) communication systems. The resultant noisy reference BEP waterfall curves are presented. The numerical advantages of this technique and some practical results are discussed. In a parallel manner, the BEP for quadrature amplitude modulation (QAM) communication systems can be analyzed. This technique is numerically more intensive but is used to generate noisy reference BEP waterfall curves for 16-QAM and 64-QAM modulations. Unfortunately, few carrier synchronizers produce a complex Gaussian reference signal, but pragmatically many reference signals can be accurately approximated by a complex Gaussian at moderate to high SNR. Actual BEP performance and the approximate results are compared.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.