Abstract
Further trajectory studies on the C+ + H2O reaction have been performed using a potential energy surface described through a finite element method in its p version. In former trajectory studies [Y. Ishikawa, T. Ikegami and R.C. Binning Jr., Direct ab initio molecular dynamics study of C++H2O: angular distribution of products and distribution of product kinetic energies, Chem. Phys. Lett. 370 (2003), pp. 490–495; J.R. Flores, Quasichemical trajectories on a finite element density functional potential energy surface: the C++H2O reaction revisited, J. Chem. Phys. 125 (2006), 164309], tunnelling was not taken into account. The present results together with the analysis of the electronic excited states [J.R. Flores and A.B. González, The role of the excited electronic states in the C++H2O reaction, J. Chem. Phys. 128 (2008), 144310] are useful to interpret the mechanism of the title reaction, which has been the subject of crossed beam experiments [D.M. Sonnenfroh, R.A. Curtiss and J.M. Farrar, Collision complex formation in the reaction of C+ with H2O, J. Chem. Phys. 83 (1985), pp. 3958–3964] and can be considered a prototypical ion–molecule reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.