Abstract

Abstract We continue the study of Bergman theory for the class of slice regular functions. In the slice regular setting there are two possibilities to introduce the Bergman spaces, that are called of the first and of the second kind. In this paperwe mainly consider the Bergman theory of the second kind, by providing an explicit description of the Bergman kernel in the case of the unit ball and of the half space. In the case of the unit ball, we study the Bergman-Sce transform. We also show that the two Bergman theories can be compared only if suitableweights are taken into account. Finally,we use the Schwarz reflection principle to relate the Bergman kernel with its values on a complex half plane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.