Abstract

The permeability of frog skin under the influence of urea hyperosmolarity has been studied. Flux ratio asymmetry has been demonstrated again for tracer mannitol. The inhibitors DNP, CN(-), and ouabain have been used to eliminate active sodium transport and it was found that urea hyperosmolarity produces asymmetrical mannitol fluxes on frog skins having no short-circuit current. These findings suggest that flux ratio asymmetry is due to solute interaction and is unrelated to sodium transport. Studies with a synthetic membrane show clearly that bulk flow of fluid can produce a "solvent drag" effect and change flux ratios. When bulk flow is blocked and solute gradients allowed their full expression, then solute interaction "solute drag" is easily demonstrable in a synthetic system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.