Abstract

Studies of the total spectra of planetary nebulae (PN) show that they usually emit significant fractions of their total energy at infrared wavelengths. Many PN have IRAS observations but we do not understand their broad-band colours. To model these observations requires a combination of a photoionization treatment of the ionized region and a radiative transfer treatment of any neutral dust shell. Including the effects of the central star evolution and an assumed galactic distribution allows many observables to be simulated. I find that the Schönberner 0.64 M⊙ evolutionary track is too slow in the transition to high temperature to match the IRAS colours of PN if a typical AGB wind expansion speed is 10 km s−1. Accelerating the evolution track by a factor of 2 produces reasonable agreement. An equal mixture of carbon-rich and oxygen-rich sources with mass loss rates of 2 × 10−5 M⊙ yr−1 seems to reasonably match the general properties of the PN data from IRAS although the details are still unclear. These models strongly indicate that the post-AGB luminosity decline deduced by Knapp (1986) from radio CO line observations is not correct.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.