Abstract

The evolution characterization of the α/β interphase boundaries of the isothermally compressed Ti–5Al–2Sn–2Zr–4Mo–4Cr with lamellar microstructure was carried out via electron backscatter diffraction (EBSD) and transmission electron microscope (TEM). The effect of the α/β interphase boundary evolution on the dynamic globularization was discussed, and the nucleation model for the β recrystallized grain at the cusp of α lath in the late stage of deformation in terms of the classic nucleation theory was established. The mean α/β interface deviation angle from Burgers orientation relationship (BOR) increased continuously up to 18.9° with the increasing strain from 0.1 to 0.5, which was dominated by the continuous dynamic recrystallization. Restoration of BOR between α and β phases at the strains of 0.7 and 0.9 occurred due to the occurrence of recrystallized α and β grains following BOR, which was rationalized by a nucleation model considering the stored energy of deformation provided the driving force for nucleation at the cusp of α lath. Loss of coherency of α/β interphase boundaries at a strain about 0.3 was responsible for accelerating the dynamic globularization of α lamellae since the energy of α/β interphase boundaries increased up to the maximum value when the non-coherent α/β interphase boundaries were formed. Restoration of coherency of α/β interphase boundaries due to the recrystallization nucleation in the late stage of deformation did not substantially affect the dynamic globularization since the α/α intraphase high-angle boundaries (HAGBs) were formed and the most α/β interphase boundaries were non-coherent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.