Abstract

Local voidages were determined for conditions corresponding to dense suspension upflow and fast fluidization in a riser of diameter 76.2 mm and height 6.1 m using a reflective-type optical fiber probe at superficial air velocities between 4 and 8 m/s and solids circulation fluxes up to 425 kg/m 2 s. High-density flow of cross-sectional mean volumetric solids concentration of about 0.2±0.05 was achieved in the riser with fluid catalytic cracking (FCC) particles of mean diameter 70 μm and density 1600 kg/m 3. Local time-mean voidages were nearly as low as ε mf at the wall and as high as 0.9 at the axis. As in our other recent work, solids refluxing near the wall of dilute CFB risers no longer existed for high-density conditions. Statistical analysis of local voidage fluctuations was used to characterize the local flow dynamics. The core behaves as a relatively uniform dilute flow, interspersed with infrequent particle structures. The number and density of these structures increases with radius. Maximum heterogeneity for high-density conditions occurs at some distance from the wall, unlike dilute risers where the flow is least uniform at the wall. Intermittency index vs. local voidage plots are “bell-shaped”, with a maximum where the local time-mean voidage is approximately 0.75.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.