Abstract

We recently reported that ethanol extract of Myrianthus arboreus P. Beauv. root bark demonstrated antidiabetic activity by modulating hepatocyte glucose homeostasis. This activity was associated significantly to the ethyl acetate (EAc) fraction. The current study sought to identify the active compounds responsible of the antidiabetic effect of M. arboreus in the EAc fraction using bioassay-directed sub-fractionation. EAc fraction was sub-fractionated using Flash chromatography. Preparative HPLC was used to isolate the pure compounds. The structures of the isolated compounds were confirmed by analysis of NMR spectroscopic and mass spectrometric data. Hepatic (H4IIE, HepG2) cells were treated with maximum non-toxic concentrations of ethanol extract, its EAc fraction and isolated compounds thereof. Glucose-6-phosphatase (G6Pase) activity was measured using the glucose oxidase method. To measure glycogen synthase (GS) activity, radioactive assays were used. Phosphorylation of AMP-activated protein kinase (AMPK) and Glycogen Synthase Kinase-3 (GSK-3) were probed by Western blot. Six sub-fractions were obtained, and the antidiabetic activity was found in two sub-fractions (SFE1 and SFE2). For the first time, two known C-glycosylflavone regio-isomers, isoorientin (1) and orientin (2) were detected and isolated from M. arboreus plant, especially from SFE2 as well as protocatechuic acid, 3,4-dihydroxybenzaldehyde (4), and chlorogenic acid isolated from SFE1. The compounds 1, 2, 4 were determined to decrease the activity of G6Pase by increasing AMPK phosphorylation and to stimulate GS through GSK-3 phosphorylation. Isoorientin which is one of the main compounds of EAc fraction, expressed the strongest effect in all bioassays, similar to that of the EAc fraction. A significant and linear correlation was found between the phosphorylation of AMPK and the activity of G6Pase modulated by all samples (R2 = 0.54; p < 0.05). Similar to G6Pase assay, a correlation was determined between the capacity of M. arboreus extracts/fractions/compounds to stimulate GS activity and to phosphorylate GSK-3 (R2 = 0.57, p < 0.01). Results demonstrate that 1, 2, 4 are responsible, at least in part, for the antidiabetic activity of M. arboreus. These compounds can be used to ensure the quality and efficacy of M. arboreus antidiabetic preparations and standardize such preparations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.