Abstract

Quinoxaline-di-N-oxides (QdNOs) are potential antibacterial agents with a wide range of biological properties. Quinocetone (QCT), carbadox (CBX), olaquindox (OLA), mequindox (MEQ) and cyadox (CYA) are classical QdNOs. Though the genotoxicity of parent drugs has been evaluated, the genotoxicity of their primary N → O reduced metabolites remains unclear. In the present study, a battery of four different short-term tests, mouse lymphoma assay (MLA), Ames test, chromosomal aberration assay in vitro and bone marrow erythrocyte micronucleus assay in vivo was carried out to investigate the genotoxicity of the six primary N → O reduced metabolites. Additionally, the genotoxicity of five parent drugs was evaluated by the MLA. Strong genotoxicity of N1-MEQ, B-MEQ and B-CBX was found in three of the assays but not in the Ames assay, and the rank order was N1-MEQ>B-MEQ>B-CBX that is consistent with prototype QdNOs. Negative results for the five QdNOs were noted in the MLA. We present for the first time a comparison of the genotoxicity of primary N → O reduced metabolites, and evaluate the ability of five QdNOs to cause mutations in the MLA. The present study demonstrates that metabolites are involved in genetic toxicity mediated by QdNOs, and improve the prudent use of QdNOs for public health.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.