Abstract

It is known that a nonsingular, nonscalar, n-by-n complex matrix A may be factored as A = BC, in which the spectra of B and C are arbitrary, subject to det (A) = det (B) det (C). It has been shown that when two matrices have eigenvalues of high geometric multiplicity, this restricts the possible Jordan structure of the third. We demonstrate a previously unknown restriction on the Jordan structures of B and C. Furthermore, we show that this generalized geometric multiplicity restriction implies the already known geometric multiplicity restriction, show that the new more restrictive condition is not sufficient in general but is sufficient in a situation that we identify.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.