Abstract

Recent developments from a continuing effort to provide an equivalent plate representation for aircraft structural analysis are described. Previous work provided an equivalent plate analysis formulation that is capable of modeling aircraft wing structures with a general planform such as cranked wing boxes. However, the modeling is restricted to representing wing boxes having symmetric cross sections. Further developments, which are described, allow modeling of wing cross sections having asymmetries that can arise from airfoil camber or from thicknesses being different in the upper and lower cover skins. An implementation of thermal loadings, which are described as temperature distributions over the planform of the cover skins, has been included. Spring supports have been added to provide for a more general set of boundary conditions. Numerical results are presented to assess the effect of wing camber on the static and dynamic response of an example wing structure under pressure and thermal loading. These results are compared with results from a finite element analysis program to indicate how well a cambered wing box can be represented with an equivalent plate formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.