Abstract

Chromosome pairing has been examined in foetal oocytes of mice heterozygous either for an X-linked inversion, In(X)1H, or an autosomal inversion, In(2)2H. The patterns of chromosome pairing have been screened systematically in foetuses of different gestational ages in a search for a "production-line" effect particularly affecting the inversion-bearing bivalents. The proportion of pachytene oocytes with a loop fell with increasing gestational age for both inversions. The decrease was linear for In(X)1H but best described by a quadratic function for In(2)2H. Examination of late zygotene cells and a comparison of loop frequency in early, mid and late pachytene oocytes suggested this age-related decrease to be principally due to synaptic adjustment and not to a production-line effect. However, two particular observations were somewhat at variance with this conclusion. Firstly, in In(X)1H heterozygotes, the presence of an inversion loop and the occurrence of partial pairing of long/long-medium bivalents at pachytene were independent of each other only on day 19. Secondly, although the proportion of oocytes with a loop fell overall, there was a rise at 19 days in In(2)2H heterozygotes. Thus in both inversions there is some evidence of a change in pairing behaviour affecting the inversion-bearing bivalents at the latest gestational age, as would be expected under the production-line hypothesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call