Abstract

The lack of selective gap junctional uncoupling agents has hampered evaluation of the contribution of intercellular communication to pharmacomechanical coupling and vascular contractility. Thus we further explored the utility and selectivity of heptanol as a gap junctional uncoupling agent in isolated rat aortic rings. Fifty-two aortic rings were obtained from 15 rats and were precontracted to approximately 75% of maximum with phenylephrine (PE). When contraction achieved steady state (approximately 5 min), a single concentration of heptanol (200 microM) was added to each aortic ring at 1- to 3-min intervals for up to 42 min post-PE addition. At early time points (5-10 min after PE), heptanol elicited an approximately 50% loss of tension (i.e., relaxation). At subsequent time points post-PE, a gradual and time-dependent decrease in the magnitude of the heptanol-induced relaxation was observed until, after approximately 40 min, addition of heptanol was associated with little, if any, detectable relaxation. Linear regression analysis of the magnitude of the heptanol-induced relaxation vs. the square root of the elapsed time interval (from addition of PE) revealed a highly significant negative correlation (P < 0.001, R = 0.81). Studies conducted on KCl-precontracted aortic rings revealed no detectable heptanol-induced relaxation after development of the steady-state KCl-induced contraction. These data extend our previous observations to further document the potential utility of heptanol as a "relatively selective" uncoupling agent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.