Abstract

Abstract Time series of coastal sea level during 1976–77, from 2°12′S to 17°S along the west coast of South America, show that low-frequency, ω < 0.25 cycles per day (cpd), fluctuations propagate poleward with the phase speed of baroclinic Kelvin waves (2–3 m s−1). The alongshore coherence is highest in the frequency band 0.1–0.2 cpd. Computing the frequency-domain empirical orthogonal functions (EOF) for alongshore current, from an army of current meters extending from 5°S to 15°S during March-May 1977, gives 70% of the variance in the 0.1–0.2 cpd frequency band to an EOF mode with poleward phase propagation at 2.75 m s−1. The vertical structure of the alongshore current fluctuations (0.1–0.2 cpd) over the continental slope at 5°S and 15°S is consistent with a first-mode baroclinic Kelvin wave. The current and sea-level fluctuations are coherent and propagate poleward through latitudes where their frequency equals the local inertial frequency. The fluctuations are not significantly coherent with coastal ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call