Abstract

The Comprehensive Nuclear-Test-Ban Treaty (CTBT) is supported by a network of certified laboratories that perform high-resolution gamma-spectrometry on global air filter samples for the identification of 85 radionuclides. At the UK CTBT Radionuclide Laboratory (GBL15), a novel cosmic veto gamma-spectrometer has been developed to improve the sensitivity of measurements for treaty compliance. The system consists of plastic scintillation plates operated in time-stamp mode to detect coincident cosmic-ray interactions within an HPGe gamma-spectrometer. This provides a mean background reduction of 75.2 % with MDA improvements of 45.6 %. The CTBT requirement for a 140Ba MDA is achievable after 1.5 days counting compared to 5–7 days using conventional systems. The system does not require dedicated coincidence electronics, and remains easily configurable with dual acquisition of unsuppressed and suppressed spectra. Performance has been significantly improved by complete processing of the cosmic-ray spectrum (0–25 MeV) combined with the Canberra Lynx™ multi-channel analyser. The improved sensitivity has been demonstrated for a CTBT air filter sample collected after the Fukushima incident.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.