Abstract

Abstract The application of relatively simple and cheap wrapped wire spacer in the European supercritical water-cooled reactor (SCWR) (high-performance light water reactor (HPLWR)) has been proposed in order to provide enhanced heat transfer in the fuel assembly without unacceptable penalty in pressure loss. The wires cause twisting flow in the fuel assembly, which means the coolant not only flows straight in the axial direction but also has a significant transverse velocity component, and strong mixing between neighboring subchannels occurs. The aim of this ongoing research is to numerically investigate the effect of wrapped wire spacers on thermal hydraulics of the turbulent coolant flow and its heat transfer in a small bundle of four fuel rods. One bare and six-wired geometries with varying wire pitches (1–6 turn(s) of wires) have been studied. It was found that the wires generate significant amount of transverse velocity, decrease the wall temperature, and increase the heat transfer coefficient mostly in corner subchannels which were the hottest in bare geometry. Thus, the presence of wires enhances heat transfer where it is most needed. Temperature hot spots with moderate values have been identified on the cladding wall of fuel rods. Based on the results, a technically optimal choice of number of wire turns from thermal hydraulic sense has been proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call