Abstract

Bacterial lipopolysaccharides (LPS) greatly increase cGMP levels in short term cultures of rat fetal liver cells without affecting the concentration of cAMP. This effect is produced by very small (1 ng) amounts of LPS and is both dose and time dependent. The time dependence is characterized by an initial lag period of 60-120 min followed by a rapid, persistent increase in cGMP levels. Since this time course suggests that synthesis of an intermediate might play an important role in the cGMP elevation, a series of experiments was done to evaluate the effect of LPS on DNA, RNA, and protein (macromolecular) synthesis. LPS did not measurably effect total macromolecular synthesis. However, inhibitors of RNA and protein synthesis markedly reduced cGMP levels in LPS-treated cells, whereas inhibition of DNA synthesis did not. Addition of sodium nitroprusside to control and inhibitor-treated cultures produced large equivalent increases of cGMP levels in both cases, indicating that the cells present were fully capable of responding to a stimulus of guanylate cyclase. Taken together, this data suggests that expression of the LPS-cGMP response in fetal liver cells is dependent on synthesis of an intermediary protein(s) during the lag phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call