Abstract

HIV entry into target cells is a highly sequential and time-sensitive process. In recent years, potent HIV Env-targeting antibodies, such as VRC01, have been identified. However, antibodies bind only to a single epitope, and mutations that confer resistance to antibody-mediated inhibition of HIV entry have been detected. In contrast, HIV cannot escape from binding to soluble CD4 (sCD4) without a fitness disadvantage. sCD4 has the unique ability to induce conformational changes within the HIV envelope glycoproteins (Env) that allow fusion inhibitors to bind. We have previously linked sCD4 to the fusion inhibitor FIT45 (sCD4-FIT45) and examined delivery of the bifunctional entry inhibitor via gene therapy. Here, we extend our studies and analyze the ability of sCD4-FIT45 to inhibit HIV Env-mediated cell fusion and HIV entry of several primary isolates. sCD4-FIT45 inhibited both cell fusion and HIV entry with remarkable antiviral activity. The mean 50% inhibitory concentrations (IC50) for sCD4-FIT45 were <0.2 μg/mL in both assays. Importantly, inhibition by sCD4-FIT45 was more potent than by VRC01, sCD4, or the previously described bifunctional protein sCD4-scFv17b. In contrast to sCD4, sCD4-FIT45 as well as VRC01 and sCD4-scFv17b did not mediate cell fusion between HIV Env+ and CD4−CCR5+ cells. The results presented here provide further evidence for the testing of sCD4-FIT45 and development of bifunctional proteins based on the sCD4-fusion inhibitor architecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.