Abstract

This study was designed to resolve basic questions concerning the nature of low density lipophorin (LDLp) which is induced by adipokinetic hormone (AKH). For this purpose, lipophorin was fractionated by density gradient ultracentrifugation and each fraction containing lipophorin was analyzed for diacylglycerol and associated apolipophorin-III (apoLp-III). The diacylglycerol content of LDLp fractions increased significantly as the density of the fraction decreased (116 micrograms/100 micrograms protein at a high density to 209 micrograms/100 micrograms protein at a lower density). On the other hand, the content of diacylglycerol in each fraction of HDLp remained almost constant (33 micrograms/100 micrograms protein). It was also found that the number of apoLp-III molecules associated with LDLp increased as the density decreased (from 6.9 mol/mol LDLp to 13.2 mol/mol LDLp). However, electron microscopic observation showed that LDLp particles in each of the fractions were extremely heterogeneous in size with diameters of 29.4 +/- 6.8 nm, 27.1 +/- 5.5 nm, and 26.3 +/- 5.7 nm for low, medium, and high density fraction, respectively. HDLp particles were very homogeneous in size irrespective of the fraction (15.9 +/- 1.5 nm, 15.6 +/- 1.5 nm, and 15.6 +/- 1.3 nm for the respective fractions). A theoretical analysis based on all the experimental data strongly supports the hypothesis that the heterogeneity in the size of LDLp particles does not reflect different densities, but rather, heterogeneity is the result of intermolecular fusion between LDLp particles of the same density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call