Abstract

An alternative solution to the problem of obtaining acceptable performances on a fading channel is the diversity technique, which is widely used to combat the fading effects of time-variant channels. The symbol error probability of M-ary DPSK (MDPSK), PSK (MPSK) and QAM (MQAM) systems using 2 branches from the branch with the largest signal-to-noise ratio(SNR) at the output of L-branch selection combining(SC), i.e., SC2 in frequency-nonselective slow Nakagami fading channels with an additive white Gaussian noise(AWGN) is derived theoretically. These performance evaluations allow designers to determine M-ary modulation methods against Nakagami fading channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call