Abstract

The Apollo 12 lunar module (LM) landing near the Surveyor III spacecraft at the end of 1969 has remained the primary experimental verification of the predicted physics of plume ejecta effects from a rocket engine interacting with the surface of the moon. This was made possible by the return of the Surveyor III camera housing by the Apollo 12 astronauts, allowing detailed analysis of the composition of dust deposited by the LM plume. It was soon realized after the initial analysis of the camera housing that the LM plume tended to remove more dust than it had deposited. In the present study, coupons from the camera housing have been reexamined. In addition, plume effects recorded in landing videos from each Apollo mission have been studied for possible clues. Several likely scenarios are proposed to explain the Surveyor III dust observations. These include electrostatic levitation of the dust from the surface of the Moon as a result of periodic passing of the day-night terminator; dust blown by the Apollo 12 LM flyby while on its descent trajectory; dust ejected from the lunar surface due to gas forced into the soil by the Surveyor III rocket nozzle, based on Darcy's law; and mechanical movement of dust during the Surveyor landing. Even though an absolute answer may not be possible based on available data and theory, various computational models are employed to estimate the feasibility of each of these proposed mechanisms. Scenarios can then be tested which combine multiple mechanisms to produce results consistent with observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.