Abstract

We consider in this note Furstenberg transformations on Cartesian products of infinite-dimensional tori. Under some appropriate assumptions, we show that these transformations are uniquely ergodic with respect to the Haar measure and have countable Lebesgue spectrum in a suitable subspace. These results generalise to the infinite-dimensional setting previous results of H. Furstenberg, A. Iwanik, M. Lemanzyk, D. Rudolph and the second author in the one-dimensional setting. Our proofs rely on the use of commutator methods for unitary operators and Bruhat functions on the infinite-dimensional torus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.