Abstract

A new series of furofuran lignans containing catechol moiety were prepared from the reactions between lignans and a variety of phenolics. All 22 products obtained were evaluated against three different α-glucosidases (maltase, sucrase and Baker’s yeast glucosidase) and DPPH radical. Of furofuran lignans evaluated, β-14, having two catechol moieties and one acetoxy group, was the most potent inhibitor against Baker’s yeast, maltase, and sucrase with IC50 values of 5.3, 25.7, and 12.9 µM, respectively. Of interest, its inhibitory potency toward Baker’s yeast was 28 times greater than standard drug, acarbose and its DPPH radical scavenging (SC50 11.2 µM) was 130 times higher than commercial antioxidant BHT. Subsequent investigation on mechanism underlying the inhibitory effect of β-14 revealed that it blocked Baker’s yeast and sucrase functions by mixed-type inhibition while it exerted non-competitive inhibition toward maltase. Molecular dynamics simulation of the most potent furofuran lignans (4, α-8b, α-14, and β-14) with the homology rat intestinal maltase at the binding site revealed that the hydrogen bond interactions from catechol, acetoxy, and quinone moieties of furofuran lignans were the key interaction to bind tightly to α-glucosidase. The results indicated that β-14 possessed promising antidiabetic activity through simultaneously inhibiting α-glucosidases and free radicals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.