Abstract

BackgroundCurrent biomass pretreatment by hydrothermal treatment (including acid hydrolysis, steam explosion, and high-temperature steaming) and ionic liquids generally generate inhibitors to the following fermentation process. Furfural is one of the typical inhibitors generated in hydrothermal treatment of biomass. Furfural could inhibit cell growth rate and decrease biofuel productivity of microbes. Candida tropicalis is a promising microbe for the production of biofuels and value-added chemicals using hemicellulose hydrolysate as carbon source. In this study, C. tropicalis showed a comparable ability of furfural tolerance during fermentation. We investigated the mechanism of C. tropicalis’s robust tolerance to furfural and relevant metabolic responses to obtain more information for metabolic engineering of microbes for efficient lignocellulose fermentation.Results Candida tropicalis showed comparable intrinsic tolerance to furfural and a fast rate of furfural detoxification. C. tropicalis’s half maximal inhibitory concentration for furfural with xylose as the sole carbon source was 3.69 g/L, which was higher than that of most wild-type microbes reported in the literature to our knowledge. Even though furfural prolonged the lag phase of C. tropicalis, the final biomass in the groups treated with 1 g/L furfural was slightly greater than that in the control groups. By real-time PCR analysis, we found that the expression of ADH1 in C. tropicalis (ctADH1) was induced by furfural and repressed by ethanol after furfural depletion. The expression of ctADH1 could be regulated by both furfural and ethanol. After the disruption of gene ctADH1, we found that C. tropicalis’s furfural tolerance was weakened. To further confirm the function of ctADH1 and enhance Escherichia coli’s furfural tolerance, ctADH1 was overexpressed in E. coli BL21 (DE3). The rate of furfural degradation in E. coli BL21 (DE3) with pET-ADH1 (high-copy plasmid) and pCS-ADH1 (medium-copy plasmid) was increased by 1.59-fold and 1.28-fold, respectively.Conclusions Candida tropicalis was a robust strain with intrinsic tolerance to inhibitor furfural. The mechanism of furfural detoxification and metabolic responses were identified by multiple analyses. Alcohol dehydrogenase 1 was confirmed to be responsible for furfural detoxification. C. tropicalis showed a complex regulation system during furfural detoxification to minimize adverse effects caused by furfural. Furthermore, the mechanism we uncovered in this work was successfully applied to enhance E. coli’s furfural tolerance by heterologous expression of ctADH1. The study provides deeper insights into strain modification for biofuel production by efficient lignocellulose fermentation.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-016-0668-x) contains supplementary material, which is available to authorized users.

Highlights

  • Current biomass pretreatment by hydrothermal treatment and ionic liquids generally generate inhibitors to the following fermentation process

  • We found that C. tropicalis showed a comparable intrinsic tolerance to furfural by half maximal inhibitory concentration (IC50) analysis

  • To provide deeper insights into the mechanisms of furfural tolerance and metabolic responses, we investigated the expression of key genes involved in ethanol production using quantitative real-time PCR

Read more

Summary

Introduction

Current biomass pretreatment by hydrothermal treatment (including acid hydrolysis, steam explosion, and high-temperature steaming) and ionic liquids generally generate inhibitors to the following fermentation process. Furfural is one of the typical inhibitors generated in hydrothermal treatment of biomass. Furfural could inhibit cell growth rate and decrease biofuel productivity of microbes. Candida tropicalis is a promising microbe for the production of biofuels and value-added chemicals using hemicellulose hydrolysate as carbon source. Lignocellulosic biomass is an attractive and promising substrate source for the production of biofuels and value-added chemicals. During pretreatment of lignocellulose by acid hydrolysis, steam explosion, and high-temperature steaming [2,3,4,5], several groups of inhibitors for fermentation are generated, such as furfural, phenolic compounds, and acetic acid [6,7,8]. In Candida tropicalis, growth and xylitol fermentation could be inhibited by furfural [14]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.