Abstract
The state-of-the-art lithium-ion capacitors (LICs), consisting of high-capacity battery-type anode and high-rate capacitor-type cathode, can deliver high energy density and large power density when comparing with traditional supercapacitors and lithium-ion batteries, respectively. However, the ion kinetics mismatch between cathode and anode leads to unsatisfied cycling lifetime and anode degradation. Tremendous efforts have been devoted to solving the abovementioned issue. One promising strategy is altering high conductive hard carbon anode with excellent structural stability to match with activated carbon cathode, assembling dual-carbon LIC. In this contribution, one-pot in-situ expansion and heteroatom doping strategy was adopted to prepare sheet-like hard carbon, while activated carbon was obtained involving activation. Ammonium persulfate was used as expanding and doping agent simultaneously. While furfural residues (FR) were served as carbon precursor. The resulting hard carbon (FRNS-HC) and activated carbon (FRNS-AC) show excellent electrochemical performance as negative and positive electrodes in a lithium-ion battery (LIB). To be specific, 374.2 mAh g−1 and 123.1 mAh g−1 can be achieved at 0.1 A g−1 and 5 A g−1 when FRNS-HC was tested as anode. When combined with a highly porous carbon cathode (SBET = 2961 m2 g−1) synthesized from the same precursor, the LIC showed high specific energy of 147.67 Wh kg−1 at approximately 199.93 W kg−1, and outstanding cycling life with negligible capacitance fading over 1000 cycles. This study could lead the way for the development of heteroatom-doped porous carbon nanomaterials applied to Li-based energy storage applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.