Abstract

ABSTRACT In this study, a new sacrificial anode comprised of scrap iron packaged in a polyethylene mesh chamber for Furan-2-carbaldehyde removal using the electrocoagulation (EC) process was fabricated. Therefore, the influences of different operational parameters, such as solution pH, current intensity, initial Furan-2-carbaldehyde concentration, and detention time on the process performance at the batch hydraulic reactor were investigated. Due to the large surface area of the anode, the applied current intensity was low, which led to high efficiency for the Furan-2-carbaldehyde removal (> 97%) at low operating voltage and energy consumption (5.4 kWh/m3). The experimental results corresponded well to the first-order kinetic model. The mineralization values for Furan-2-carbaldehyde using the EC process were 46.5% and 75.5% for total organic carbon (TOC) and chemical oxygen demand (COD), respectively. Moreover, the EC process shows the biodegradability was significantly increased compared to the initial solution after 120 min of reaction time. Based on the LC-MS analysis, the major produced intermediates and the degradation pathway of Furan-2-carbaldehyde were proposed. Consequently, on the contrary plate electrodes, the use of scrap iron as a sacrificial anode increases efficiency and reduces the total required operating costs for energy and electrodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.