Abstract

BackgroundRNA interference (RNAi) is involved in genome defense as well as diverse cellular, developmental, and physiological processes. Key components of RNAi are Argonaute, Dicer, and RNA-dependent RNA polymerase (RdRP), which have been functionally characterized mainly in model organisms. The key components are believed to exist throughout eukaryotes; however, there is no systematic platform for archiving and dissecting these important gene families. In addition, few fungi have been studied to date, limiting our understanding of RNAi in fungi. Here we present funRNA http://funrna.riceblast.snu.ac.kr/, a fungal kingdom-wide comparative genomics platform for putative genes encoding Argonaute, Dicer, and RdRP.DescriptionTo identify and archive genes encoding the abovementioned key components, protein domain profiles were determined from reference sequences obtained from UniProtKB/SwissProt. The domain profiles were searched using fungal, metazoan, and plant genomes, as well as bacterial and archaeal genomes. 1,163, 442, and 678 genes encoding Argonaute, Dicer, and RdRP, respectively, were predicted. Based on the identification results, active site variation of Argonaute, diversification of Dicer, and sequence analysis of RdRP were discussed in a fungus-oriented manner. funRNA provides results from diverse bioinformatics programs and job submission forms for BLAST, BLASTMatrix, and ClustalW. Furthermore, sequence collections created in funRNA are synced with several gene family analysis portals and databases, offering further analysis opportunities.ConclusionsfunRNA provides identification results from a broad taxonomic range and diverse analysis functions, and could be used in diverse comparative and evolutionary studies. It could serve as a versatile genomics workbench for key components of RNAi.

Highlights

  • RNA interference (RNAi) is involved in genome defense as well as diverse cellular, developmental, and physiological processes

  • Conclusions: funRNA provides identification results from a broad taxonomic range and diverse analysis functions, and could be used in diverse comparative and evolutionary studies. It could serve as a versatile genomics workbench for key components of RNAi

  • Gene silencing by RNAi begins with recognition of aberrant RNA or introduction of double-stranded RNA

Read more

Summary

Introduction

RNA interference (RNAi) is involved in genome defense as well as diverse cellular, developmental, and physiological processes. Key components of RNAi are Argonaute, Dicer, and RNA-dependent RNA polymerase (RdRP), which have been functionally characterized mainly in model organisms. We present funRNA http://funrna.riceblast.snu.ac.kr/, a fungal kingdom-wide comparative genomics platform for putative genes encoding Argonaute, Dicer, and RdRP. Description: To identify and archive genes encoding the abovementioned key components, protein domain profiles were determined from reference sequences obtained from UniProtKB/SwissProt. 1,163, 442, and 678 genes encoding Argonaute, Dicer, and RdRP, respectively, were predicted. Based on the identification results, active site variation of Argonaute, diversification of Dicer, and sequence analysis of RdRP were discussed in a fungus-oriented manner. Gene silencing by RNAi begins with recognition of aberrant RNA (aRNA) or introduction of double-stranded RNA (dsRNA), such as viral genomes. Argonaute acts on these fragments by forming an RNA-induced silencing complex (RISC), which is subsequently guided to target mRNAs, resulting in gene silencing

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.