Abstract

Mitochondrial activity in cancer cells has been central to cancer research since Otto Warburg first published his thesis on the topic in 1956. Although Warburg proposed that oxidative phosphorylation in the tricarboxylic acid (TCA) cycle was perturbed in cancer, later research has shown that oxidative phosphorylation is activated in most cancers, including prostate cancer (PCa). However, more detailed knowledge on mitochondrial metabolism and metabolic pathways in cancers is still lacking. In this study we expand our previously developed method for analyzing functional homologous proteins (FunHoP), which can provide a more detailed view of metabolic pathways. FunHoP uses results from differential expression analysis of RNA-Seq data to improve pathway analysis. By adding information on subcellular localization based on experimental data and computational predictions we can use FunHoP to differentiate between mitochondrial and non-mitochondrial processes in cancerous and normal prostate cell lines. Our results show that mitochondrial pathways are upregulated in PCa and that splitting metabolic pathways into mitochondrial and non-mitochondrial counterparts using FunHoP adds to the interpretation of the metabolic properties of PCa cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.