Abstract

Biological synthesis of nanoparticles (NPs) has gained extensive attention during recent years by using various biological resources such as plant extracts and microorganisms as reducing and stabilizing agents. The objective of the present study was to biosynthesize zirconium NPs using Penicillium species as a reliable and eco-friendly protocol for the first time. The synthesized NPs were characterized using Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM), Dynamic Light Scattering (DLS), Energy Dispersive X-ray (EDX), and Fourier Transform Infrared (FT-IR). The results showed that three Penicillium species were able to synthesize zirconium NPs extracellularly with spherical morphology below 100 nm. Moreover, the preliminary antibacterial activity of zirconium NPs represented considerable antibacterial potential against Gram-negative bacteria. Overall, the current study demonstrated a novel bio-based approach for preparation of zirconium NPs. Further studies are required to expend this laboratory-based investigation to an industrial scale owing to their superiorities over traditional physicochemical methods such as cost-effectiveness and eco-friendliness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call