Abstract

Fruit softening exacerbates mechanical damage incurred during shipping and handling and the increase in pathogen susceptibility. Here, oligogalacturonides (OGs) produced by fungal polygalacturonase (PG) delayed fruit softening in tomato and maintained fruit firmness at 8.37 ± 0.45 N at 13 d of storage, which was consistent with the fruit firmness level of 5 d in the control groups. From RNA sequencing data in line production of phytohormones, we confirmed ethylene and jasmonic acid signals, the MAPK signaling cascade, and calmodulin involved in the OG-mediated firmness response of whole fruit. SlPG2, SlPL3, and SlPL5 were the major contributing factors for fruit softening, and their expression decreased continuously upon OG application. Suppression of the expression of ethylene response factors using a virus-induced gene-silencing strategy revealed that SlERF6 was negatively involved in OG-restrained fruit softening. Taken together, these results indicated that fungal PG-generated OGs have potential application value in controlling tomato fruit softening.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.