Abstract

Developing efficient laccase-mimicking nanozymes via a facile and sustainable strategy is intriguing in environmental sensing and fuel cells. In our work, a MnO/porous carbon (MnO/PC) nanohybrid based on fungus was synthesized via a facile carbonization route. The nanohybrid was found to possess excellent laccase-mimicking activity using 2,2′-azinobis (3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) as the substrate. Compared with the natural laccase and reported nanozymes, the MnO/PC nanozyme had much lower Km value. Furthermore, the electrochemical results show that the MnO/PC nanozyme had high electrocatalytic activity toward the oxygen reduction reaction (ORR) when it was modified on the electrode. The hybrid nanozyme could catalyze the four-electron ORR, similar to natural laccase. Moreover, hydroquinone (HQ) induced the reduction of oxABTS and caused the green color to fade, which provided colorimetric detection of HQ. A desirable linear relationship (0–50 μM) and detection limit (0.5 μM) were obtained. Our work opens a simple and sustainable avenue to develop a carbon–metal hybrid nanozyme in environment and energy applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call