Abstract
Trifluoromethylphenyl amides (TFMPAs) were designed and synthesized as potential pesticides. Thirty-three structures were evaluated for fungicidal activity against three Colletotrichum species using direct bioautography assays. Active compounds were subsequently tested against C. fragariae, C. gloeosporioides, C. acutatum, Phomopsis obscurans, P. viticola, Botrytis cinerea and Fusarium oxysporum. The study identified 2-chloro-N-[2,6-dichloro-4-(trifluoromethyl)phenyl]acetamide (7a) as showing the strongest antifungal activity, and the broadest activity spectrum in this set against Colletotrichum acutatum (at 48 and 72 h) and Phomopsis viticola (at 144 h). The presence of triethylamine in its complex with N-[2,6-dichloro-4-(trifluoromethyl)phenyl]-2,2,3,3,3-pentafluoropropanamide (7b') played an important role in the bioactivity, and depending on the concentration or fungal species it showed higher or lower activity than the parent amide. X-Ray crystallography has shown that the complex (7b') is an ion pair, (C10 H2 Cl2 F8 NO)- (C6 H16 N)+ , where a proton is transferred from the amide nitrogen to the triethylamine nitrogen and then connected by hydrogen bonding to the acyl oxygen (N-H 0.893 Å; H⋅⋅⋅O 1.850 Å; N⋅⋅⋅O 2.711 Å; N-H⋅⋅⋅O 161.2(13)°). Although none of these compounds were better than standards, this work revealed some potential lead structures for further development of active novel compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.