Abstract

Aspergillus sydowii is a mesophilic soil saprobe that is a food contaminant as well as a human pathogen in immune-compromised patients. The biological fabrication of silica and silver nanoparticles provides advancements over the chemical approach, as it is eco-friendly and cost-effective. In the present study, Aspergillus sydowii isolates were collected from the soil fields of six different sites in the western area of Saudi Arabia and then identified using the PCR technique following sequencing analysis by BLAST and phylogenetic analysis. Then, applied silica and silver nanoparticles were synthesized by biological methods, using Aspergillus niger as a reducer. Silver and silica nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The antifungal activity of silver and silica nanoparticles against Aspergillus sydowii isolates was evaluated using the disc diffusion method and the minimum inhibitory concentration (MIC). The physiochemical results emphasized the fabrication of silver and silica nanoparticles in spherical shapes with a diameter in the range of 15 and 40 nm, respectively, without any aggregation. MIC of Ag-NPs and Si-NPs against Aspergillus sydowii isolates were 31.25 and 62.5 µg/mL, respectively. Finally, the aim of the study is the use of silver as well as silica nanoparticles as antifungal agents against Aspergillus sydowii.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call