Abstract
Mycelium-Based Composites (MBCs) are innovative engineering materials made from lignocellulosic by-products bonded with fungal mycelium. While some performance characteristics of MBCs are inferior to those of currently used engineering materials, these composites nevertheless prove to be superior in ecological aspects. Improving the properties of MBCs may be achieved using an adequate substrate type, fungus species, and manufacturing technology. This article presents scientifically verified guiding principles for choosing a fungus species to obtain the desired effect. This aim was realized based on analyses of scientific articles concerning MBCs, mycological literature, and patent documents. Based on these analyses, over 70 fungi species used to manufacture MBC have been identified and the most commonly used combinations of fungi species-substrate-manufacturing technology are presented. The main result of this review was to demonstrate the characteristics of the fungi considered optimal in terms of the resulting engineering material properties. Thus, a list of the 11 main fungus characteristics that increase the effectiveness in the engineering material formation include: rapid hyphae growth, high virulence, dimitic or trimitic hyphal system, white rot decay type, high versatility in nutrition, high tolerance to a substrate, environmental parameters, susceptibility to readily controlled factors, easy to deactivate, saprophytic, non-mycotoxic, and capability to biosynthesize natural active substances. An additional analysis result is a list of the names of fungus species, the types of substrates used, the applications of the material produced, and the main findings reported in the scientific literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.