Abstract

Living and dead microbial organisms contribute to the sequestration of soil organic carbon (SOC). The contributions of different community compositions are not well understood, particularly at the initial stage of soil development. Using an eight-year field experiment established on exposed parent material (PM) of a Mollisol, our objectives were (1) to differentiate microbial biomass and necromass of different microbial communities, and (2) to elucidate their contributions to SOC under different agricultural practices compared to PM and an arable Mollisol without C amendment (MO). The field treatments included two no-tilled soils supporting perennial plants (Alfalfa, and natural fallow), and four tilled soils under rotation between maize and soybean in alternate years, with or without chemical fertilization and crop residue amendment. Bacterial and fungal derived necromass were estimated by comparing amino sugars (ASs) contained in living and dead cell walls and phospholipid fatty acids (PLFAs) contained in living cell membranes, assuming that the conversion factor between cell membrane and wall for all microbes was one. The ratio of living microbial biomass estimated in ASs to that as indicated by total PLFAs was 0.76–0.87, indicating a high reliability of the estimation. Microbial biomass parameters in the field treatments were lower than those in MO and higher than those in PM. Both PLFAs and ASs demonstrated that bacteria dominated over fungi (70.2% v.s. 12.6%), but the fungal derived necromass were larger than bacterial derived necromass (70.7% v.s. 25.9%) in the studied soils. The microbial contribution to SOC was larger in necromass than in living biomass. The contribution of fungal derived necromass to SOC was dominant in soils and showed the same order among the soils as the fungal biomass, i.e. being larger under alfalfa than under natural fallow and in the tilled soils with organic C amendment than those without organic C input. These results suggested that only shift in fungal community due to land use change and organic C input could influence microbial contribution to soil organic carbon stabilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.