Abstract
Dark septate endophytes (DSEs) fungi are beneficial to host plants with regard to abiotic stress. Here, we examined the capability of SWIR spectroscopy to classify fungus types and detected the growth stages of DSEs fungi in a timely, non-destructive and time-saving manner. The SWIR spectral data of five DSEs fungi in six growth stages were collected, and three pre-processing methods and sensitivity analysis (SA) variable selection methods were performed using a machine learning model. The results showed that the De-trending + first Derivative (DET_FST) processing spectra combined with the support vector machine (SVM) model yielded the best classification accuracy for fungi classification at different growth stages and growth stage detection on different fungus types. The mean accuracy of generic model for fungi classification and growth stage detection are 0.92 and 0.99 on the calibration set, respectively. Seven important bands, 1164, 1456, 2081, 2272, 2278, 2448 and 2481 nm, were found to be related to the SVM fungi classification. This study provides a rapid and efficient method for the classification of fungi in different growth stages and the detection of fungi growth stage of various types of fungi and could serve as a tool for fungi study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.