Abstract

Climate change has significantly increased the frequency and intensity of drought events in recent decades, which may affect the decomposition of organic matter such as deadwood. Previous studies have examined the impacts of microclimate and wood traits on deadwood decomposition, but how wood microbes regulate effects of drought intensity on deadwood decomposition remains unclear. In this study, a field drought experiment was conducted with three throughfall exclusion levels (i.e., control, −35% and −70% rainfall treatments) in a subtropical forest to probe relative importance of microclimate, wood traits, and microbial biomass on wood decomposition. Our results showed that the −35% and −70% rainfall treatments significantly decreased wood CO2 efflux by 28.27% and 47.49%, respectively. Drought-induced decreases in wood CO2 efflux were mainly mediated by wood microbial biomass, particularly wood fungi biomass. The structural equation modelling indicated a shift in the dominant wood microbial communities in regulating wood CO2 efflux from bacteria to fungi as drought intensities increased. Our findings highlight the crucial role of wood microbial community with the trade-off between fungi and bacteria on deadwood decomposition under drought, which should be taken into account to decode forest carbon cycle − climate feedback in the future research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.